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    abstract   :
Recent developments in molecular dynamics furnish new

interconnections among three classical fields: particle mechanics,
continuum mechanics, and thermodynamics.  The resulting links clarify
the importance of Lyapunov instability to irreversibility.

    1.  Introduction    
The paradoxical coexistence of time-reversible mechanics with

the second-law inequalities of thermodynamics has troubled physicists
for more than 100 years.  These two approaches to understanding, the
one theoretical and the other experimental in outlook, were joined by a
third route to knowledge, computer simulation, at the time of the
Second World War.  Recent extensions of the computational approach,
born of a desire to simulate nonequilibrium processes, can be analyzed
from Gibbs' phase-space point of view.  This approach leads quite
naturally to a microscopic mechanical analog of Clausius' Inequality:

§Q
.

 /T < 0 .

This macroscopic inequality summarizes the thermodynamic
observation that cyclic processes generate heat.  As we will see, the
microscopic mechanical analog of this inequality,

< dln⊗ /dt >  <  0 ,

reflects the same observation, but with the rate of heat generation
replaced by the relative expansion rate of the phase-space hypervolume
⊗ .  In the microscopic case the need for time averaging is indicated
explicitly by the angle brackets < > .



A recent particle approach to macroscopic simulation, smooth
particle applied mechanics, has revealed new links between the
reversibility paradox which separates classical mechanics from
thermodynamics, and promises assistance in understanding the
irreversibility inherent in turbulent flows.  Here we discuss the concepts
of temperature, heat transfer, Lyapunov instability, and turbulence, in
order to enhance the understanding of the connections among them.

2.  Temperature, Thermostats, and Heat Transfer
Temperature requires a thermometer, as is emphasized by

Muschik's term, "contact temperature", though the zeroth law of
thermodynamics makes it plain that the exact nature of the
thermometer is unimportant at equilibrium.  Away from equilibrium,
using simplicity as a guide, it is natural to use an ideal gas of light
particles, capable of uncorrelated impulsive collisions, to define local
temperature.  Such an ideal-gas thermometer, through impulsive
collisions, measures the kinetic energy of the degrees of freedom with
which it interacts.  The resulting definition of ideal-gas temperature
follows from kinetic theory.  For a single Cartesian degree of freedom

kT ≡ < mx.  2 > .

The arbitrariness of such a choice can be seen by considering the fact
that two general nonequilibrium systems, with different nonequilibrium
velocity distributions, but sharing a common value of the kinetic
temperature T, would typically exchange energy between themselves, if
they were able to interact impulsively, while neither nonequilibrium
system would have a net energy exchange with an idealized ideal-gas
thermometer set at their common kinetic temperature T.

The kinetic-theory definition of an ideal-gas thermometer is one
of the classical approaches to thermodynamics, and is not only the
simplest, but also the one most closely tied to computer simulation.  The
kinetic-theory definition of temperature can be embedded into the
framework of classical mechanics through the use of Hamilton's
Principle of Least Action.  That Principle requires that particle
trajectories minimize the action integral while simultaneously
satisfying all externally-imposed constraints.  A thermal constraint
requires that the kinetic energy of any thermostatted set of degrees of
freedom remains constant.  Such a phase-space constraint reduces, by
one, the number of degrees of freedom describing the system, and



results in a new thermostatted equation of motion for the constrained
coordinates:

mr
..

  = F(r) − ζmr
.
  . [1]

The time-reversible "friction coefficient" ζ which follows from
Hamilton's Principle is equal to the rate at which heat is extracted to
satisfy the constraint, divided by twice the kinetic energy K of the
constrained degrees of freedom:

ζHAMILTON = −Q
.

 /2K .

Thus ζ corresponds to the rate at which entropy is absorbed by a
reservoir modeled by the constraint.  It was only recently discovered
that this correspondence follows directly from Hamilton's Principle.
Exactly the same equation of motion [1] follows also from the simple
expedient of velocity rescaling or from the more-elegant, but
equivalent, application of Gauss' Principle of Least Constraint to the
problem of thermostatting mechanical motions.

An alternative route to incorporating temperature into mechanics
was discovered by Nosé.  He too found exactly the same equation of
motion as follows from Hamilton's Principle, but with a somewhat
different reversible friction coefficient:

ζNOSÉ-HOOVER = ∫(2∆K/kT)/τ2 dt.

Here kT is twice the equilibrium equipartition kinetic energy of a
thermostatted degree of freedom and ∆K is the instantaneous deviation
of the total kinetic energy from the average value.  τ is an arbitrary
relaxation time, which in practice is best chosen such that the timescale
of the energy fluctuations corresponds to the time between collisions for
a typical thermostatted particle.  In the equilibrium case ζN-H has a
Gaussian distribution, increasing the number of phase-space
coordinates by one.  The additional variable is the Nosé-Hoover friction
coefficient ζN-H.  Nosé chose ζN-H so as to reproduce Gibbs' equilibrium
canonical distribution for the phase-space variables { q,p }.  I have
championed the particular version of his mechanics, "Nosé-Hoover
mechanics", which avoids "time-scaling" of the constrained motions.



The half-width of the probability distribution for the friction
coefficient ζ is proportional to 1/τ.  In the limit that τ approaches zero,
Nosé's mechanics reproduces the same constrained dynamics which
follows from Hamilton's Principle of Least Action.  There is so far no
derivation of Nosé-Hoover friction based on a variational principle.

These thermostatting forces, with either Hamiltonian or Nosé-
Hoover friction coefficients, have been employed in a variety of
simulations, both at, and away from, equilibrium.  They made it possible
to use temperature as an independent variable in computer simulations
of small and large systems.  Generalizations have also been used to
control the internal energy as well as nonequilibrium fluxes.  It should
be emphasized that the time-reversibility of mechanics is retained under
the influence of thermostatting.  Both formulations just mentioned are
fully time-reversible, with the friction coefficient changing sign in the
reversed motion.

3. Lyapunov Instability in Many-Body Systems
The exponential increase of small perturbations { δq,δp } in the

initial conditions,

δ(t)/δ(0) ≈ exp(λ1t) ,

is a common feature of solutions of the many-body problem.  This
increase, which leads formally to divergence at long times, is quantified,
and generalized, through the Lyapunov exponents, both  the "local"
instantaneous exponents { λ(t) } and the "global" time-averaged
exponents { < λ(t) > } ≡ { λ }, which describe the comoving and corotating
deformations of a phase-space hypersphere governed by deterministic
equations of motion.  Both of the thermal generalizations of mechanics
outlined in Section 2 provide the same link between the Lyapunov
spectrum, the friction coefficient, or coefficients, and the resulting heat
transferred by the reversible friction forces:

Σλ(t) = −Σζ = Σ(Q
.

 /kT) .

Here the complete Lyapunov spectrum is summed up, over all degrees
of freedom, including the additional degree of freedom ζN-H in the
Nosé-Hoover case.  The friction coefficient and heat-transfer sums
include only those degrees of freedom affected by the reversible friction



forces, together with the temperatures of the reservoirs to which they
are coupled.  In the usual case the time-rate-of-change of Q is negative,
corresponding to heat flow from the system to the surroundings:

Σλ(t) = −Σζ = Σ(Q
.

 /kT) < 0 .

The key step in establishing this result is the phase-space flow
equation, the analog of Liouville's Theorem:

dlnf/dt = −Σζ  = −dln⊗ /dt,

a local identity which follows directly from the thermostatted equations
of motion.

4. Clausius' Inequality and Lyapunov Instability
This relationship between the Lyapunov exponents and the heat

transfer shows that no process which absorbs an infinite amount of heat
can take place in a bounded region of phase space.  Likewise, any
process which gives off an infinite amount of heat must occupy a
vanishingly small region of phase space.  Evidently any cyclic process
which absorbs or generates heat must, when repeated, lead either to
unbounded or to vanishing phase-space hypervolume.

Thus the requirement that averages over the phase-space
distribution be bounded excludes cyclic processes which absorb heat, in
accord with Clausius' inequality, and allows only those processes which
correspond to a vanishing region of the equilibrium phase space.
Extensive numerical work has established that the allowed phase space
regions are multifractal strange attractors, with an information
dimension strictly less than that of the equilibrium phase-space
distribution, corresponding to local Lyapunov spectra { λ(t) } whose
time-averaged global sums are strictly negative:

Σλ < 0 .

Thus the ideal-gas definition of temperature, coupled with
thermostats based on Hamilton's principle or Gibbs' distribution, makes
possible the analysis of processes involving heat transfer, and an
explanation of thermodynamic irreversibility in terms of the dynamic



Lyapunov instability of the microscopic motion equations.  This point of
view provides no support for the notion of a nonequilibrium entropy
and suggests instead that entropy is a useful concept only at
equilibrium.  The loss of the entropy concept away from equilibrium is
not a serious one, as Onsager's symmetry results can be equally well
obtained from Green and Kubo's nonentropic approach.  The
multifractal nature of the nonequilibrium phase-space distributions
which result from the use of thermostats give Gibbs' entropies of −∞,
corresponding to the extremely low probability of randomly
encountering a typical nonequilibrium state.  Such typical
nonequilibrium states have a past history which is not at all typical of
equilibrium systems.

This thermomechanical explanation of irreversible behavior is
more general than Boltzmann's, for it is not restricted to gases, and it is
also more general than Green and Kubo's, because it is not restricted to
linear deviations from equilibrium.  It shows that the dynamical
instability associated with the many-body problem requires Clausius'
inequality.  Otherwise, thermal instability would cause
thermomechanical phase-space averages to diverge.

5.  Continuum Mechanics Simulations using Smooth Particles
A new approach to computational continuum mechanics was

originated by Lucy and Monaghan in 1977.  Their idea uses "smooth
particles" to describe the time development of the continuum field
variables.  This new version of continuum mechanics associates
individual velocities and energies with each particle but calculates the
field variables at any point in space, r,  by superposing the contributions
of all particles within range of the smoothing function w(r)

< v >r = Σ mwrivi/ρi ; < e >r = Σ mwriei/ρi ; ρi = Σ mwij .

The smoothing function w is generally chosen to have continuous first
and second derivatives and a finite range, over which its integral is
unity.  The equation of motion associated with smooth particle applied
mechanics includes the stress tensors and densities of all pairs of
particles close enough to interact:

mr
..
 i = Σ m2[(σ/ρ2)i + (σ/ρ2)j] . ∇ iwij .



The stress tensors and densities at particles i and j are to be calculated
by summing up the contributions from all nearby particles, just as was
done in the example calculation of the velocity < v > above.

 The special case appropriate to a two-dimensional ideal-gas
isentrope,

σ ∝ ρ 2 ,

reduces exactly to Newton's equations of motion with the smooth
particle weight function playing the role of a pair potential.  This
similarity suggests that the evolution of a continuum shares the
Lyapunov instability that characterizes atomistic flows.  It suggests also
that efforts to describe the interaction of eddies in turbulent flow are
equivalent to the description of the coupling of velocity fluctuations in a
correspondingly driven atomistic flow.

Though the optimum means for driving turbulent flows remains
unclear, the difference between the fluid velocity at a particle < v >i and
the corresponding particle velocity vi does suggest a proper type of
local eddy-viscosity damping when smooth particles are used.  Recent
research has focused on reproducing the classical Rayleigh-Bénard
instability, both in two dimensions and in three.  Ongoing work, carried
out with Oyeon Kum, Harald Posch, and Carol Hoover, should shed
light on this second link between microscopic mechanics and
macroscopic nonequilibrium processes.
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